Hamilton decompositions of balanced complete multipartite graphs with primitive leaves
نویسندگان
چکیده
منابع مشابه
Hamilton decompositions of balanced complete multipartite graphs with primitive leaves
A graph G is said to be primitive if it contains no proper factors. In this paper, by using the amalgamation technique, we find sufficient conditions for the existence of a d-regular graph G on n vertices which: 1. has a Hamilton decomposition, and 2. has a complement in K p m that is primitive. These general results are then used to consider the bounds onmwhen p and d are fixed. The case p = 6...
متن کاملFair Hamilton Decompositions of Complete Multipartite Graphs
A fair hamilton decomposition of the complete multipartite graph G is a set of hamilton cycles in G whose edges partition the edges of G in such a way that, for each pair of parts and for each pair of hamilton cycles H1 and H2, the difference in the number of edges in H1 and H2 joining vertices in these two parts is at most one. In this paper we completely settle the existence of such decomposi...
متن کاملHamilton decompositions of graphs with primitive complements
A k-factor of a graph is a k-regular spanning subgraph. A Hamilton cycle is a connected 2-factor. A graph G is said to be primitive if it contains no k-factor with 1 ≤ k < ∆(G). A Hamilton decomposition of a graph G is a partition of the edges of G into sets, each of which induces a Hamilton cycle. In this paper, by using the amalgamation technique, we find necessary and sufficient conditions f...
متن کاملDecompositions of complete multipartite graphs
This paper answers a recent question of Dobson and Marušič by partitioning the edge set of a complete bipartite graph into two parts, both of which are edge sets of arctransitive graphs, one primitive and the other imprimitive. The first member of the infinite family is the one constructed by Dobson and Marušič.
متن کاملHamilton decompositions of complete multipartite graphs with any 2-factor leave
For m ≥ 1 and p ≥ 3, given a set of integers s1, . . . , sq with sj ≥ p + 1 for 1 ≤ j ≤ q and ∑q j=1 sj = mp, necessary and sufficient conditions are found for the existence of a hamilton decomposition of the complete p-partite graph Km,...,m−E(U), where U is a 2-factor of Km,...,m consisting of q cycles, the jth cycle having length sj . This result is then used to completely solve the problem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2010
ISSN: 0012-365X
DOI: 10.1016/j.disc.2010.03.006